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Abstract. Earlier works on screened Coulomb potentials using Rayleigh-Schrodinger per- 
turbation theory have been re-examined. Instead of working with the usual HulthCn 
potential as the unperturbed Hamiltonian, we propose that a scaled HulthCn potential with 
modified strength and screening coefficient represents the lowest-order approximation for 
the static-screened Coulomb and exponential cosine-screened Coulomb potentials. The 
scale parameter appearing in the new HulthCn potential is then determined from the notion 
of the vinal theorem and intuitive physical arguments. It is found that the accuracy of the 
predicted energy eigenvalues for the bound s states improves significantly even when the 
screening parameter is large and quite close to its critical value for which the quantum 
state becomes just bound. In spite of the simplicity of our approach, the numerical results 
compare fairly well with those obtained from rigorous analytic approximation methods. 

1. Introduction 

The problem of accurately determining the properties of the energy eigenvalues of 
spherically-symmetric-screened Coulomb potentials has been of considerable interest 
in numerous areas of physics for many years. Typical examples of this class of potentials 
are the well-known Yukawa or the static-screened Coulomb potential ( SSCP) 

( r )  = -exp(-Ar)/r (1.1) 

( r )  = -exp(-Ar) cos(Ar)/r (1.2) 

VSSCP 

and the exponential cosine screened Coulomb ( ECSC) potential 
vECSC 

which have received wide applications in plasma physics (Margenau and Lewis 1959, 
Harris 1962), nuclear physics (Yukawa 1935, Green 1949) and solid state physics 
(Bonch-Bruevich and Glasko 1959, Hall 1962, Krieger 1969). Such potentials have 
been studied using many techniques, both numerical and analytical. The most widely 
investigated analytic approximation methods involve perturbative (Iafrate and Mendel- 
sohn 1969, Lam and Varshni 1971, 1972, McEnnan et a1 1976, Killingbeck and Galicia 
1980, Lai 1981,1982), variational (Lam and Varshni 1971,1972, Roussel and O’Connell 
1974) and non-perturbative techniques (Ecker and Weizel 1956, Lam and Varshni 1976, 
Mehta and Patil 1978, Ray and Ray 1980, Dutt et ~l 1981, Patil 1984, Gerry and Laub 
1984). 

The analytic methods in general have the common feature that the numerical 
accuracy of the predicted bound-state energies decreases rapidly as the screening 
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parameter A approaches its critical value A c  for which the state in question is just 
bound. In a perturbative approach, Lai (1981, 1982) obtained very accurate energy 
eigenvalues in the critical screening region ( A / A c =  0.8) both for the SSCP and the ECSC 

potential. He  applied the Pad6 approximant technique to the analytic perturbation 
series obtained through the use of hypervirial and  Hellman-Feynman theorems. Accur- 
ate energy eigenvalues have also been obtained in the framework of the I /  N expansion 
technique (Moreno and  Zepeda 1984, Imbo et a1 1984). Recently, Patil (1984) has 
proposed a non-perturbative method for obtaining very accurate energy eigenvalues 
for any nl state of the SSCP. 

It has been observed that all these analytic methods, perturbative or  non-perturba- 
tive, which give consistently good results for the bound-state energies for a wide range 
of the screening parameter, not only involve elaborate and rigorous analytic calculations 
but also require considerable computations for each numerical prediction. Further- 
more, compact analytic expressions for the bound-state energies are not obtained in 
general. 

In view of this, it is tempting as well as realistic to invoke a simple analytic approach 
without sacrificing the numerical accuracy which has hitherto been achieved in sophisti- 
cated analytic techniques. In this paper, we try to demonstrate that the traditional 
Rayleigh-Schrodinger ( RS) perturbation method can lead to analytical approximations 
of the energies with a fairly good accuracy provided one makes the judicial choice for 
the unperturbed Hamiltonian. In  earlier works, Lam and Varshni (1971, 1972) used 
the standard HulthCn potential 

V,( r)  = -A  exp( -Ar)/[ 1 - exp( -Ar)] (1.3) 

as the unperturbed potential for both the SSCP and the ECSC potential. Working with 
this prescription, although reasonable energy eigenvalues are obtained for small A, 
there is wide discrepancy between the predicted energy eigenvalues and  those found 
numerically from direct integration of the Schrodinger equation for a large screening 
parameter. For example, the H u l t h h  perturbation gives the wrong signature for the 
ground-state energy eigenvalue of the SSCP for A = 1. This leads us to suspect that 
perhaps the screened Coulomb potentials of the form in (1 .1 )  and (1.2) are not 
adequately described by the conventional form of the HulthCn potential in (l.3), 
particularly when A is large and close to its critical value A,. We then conjecture that 
the screened Coulomb potentials may be better approximated by a scaled HulthCn 
potential 

VsH(r) = -(CIA) exp(-aAr)/[l -exp(-ahr)] (1.4) 

in which the coupling strength as well as the screening coefficient have been scaled 
up  by the factor a which is greater than unity. Although it seems at the beginning 
that the scale parameter has been introduced in an  ad hoc manner, we give reasons 
to determine it approximately using the virial theorem (Davydov 1976) and intuitive 
physical arguments. The value of a thus determined is found to be different for each 
screened potential. One of the interesting features of this approach is that even the 
rough estimate for the scale parameter gives substantial enhancement in the numerical 
accuracy of the predicted energy levels. 

In  § 2, we present the perturbative results up  to first order using the scaled HulthCn 
potential as the unperturbed Hamiltonian. A compact analytic expression for the 
energy level for an  arbitrary bound s state has been obtained from which the results 
for the SSCP and ECSC potential can be reproduced separately by proper choice of the 
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variables involved. The prescription for determining the scale parameter is discussed 
in § 3.  In 9 4, our numerical results for the bound-state energies of 1s-4s states for 
both the SSCP and ECSC potential for various screening parameters are given and 
compared to those obtained from other analytic methods. For the sake of assessing 
the accuracy of our predicted results, we also tabulate the exact values obtained 
numerically (Rogers et a1 1970) for the SSCP. As will be seen, our calculations for the 
energy levels are superior to the previous RS perturbation calculation of Lam and 
Varshni. It is very encouraging to note that our approach, although very simple, 
predicts results which are accurate within 2% for the screening parameter A as large 
as 0.8hC.  The significance of our results is finally discussed and a few remarks are 
made in support of the present point of view. 

2. RS perturbation method with the scaled HulthLn potential 

For a unified treatment of the SSCP and the ECSC potential, we perform the calculation 
for the screened Coulomb potential 

Vsc( r )  = -exp( - h r )  cos( 6 r ) /  r ( 2 . 1 )  
which corresponds to the standard SSCP and ECSC forms in ( 1  . I )  and ( 1 . 2 )  for 6 = 0 
and 6 = A respectively. 

For perturbative calculation, we decompose the potential in (2.1) as the scaled 
HulthCn potential plus a perturbation H ' :  

( 2 . 2 )  Vsc ( r )  = - ( a h )  exp(-aAr)/[l -exp(-aAr)]+H' 

where 

H ' =  ( a h )  exp(-ahr)/{[l -exp(-ahr)]-exp(-Ar) cos(sr)/r). ( 2 . 3 )  

The radial Schrodinger equation for I = 0 for the unperturbed potential may be written 
in atomic units ( h  = m = e = 1) 

d2,yn( r ) /dr2 + 2{ E + ( a h )  exp( - a h r ) / [  1 - exp( -ahr)]} ,yn(  r)  = 0 (2.4) 

Equation ( 2 . 4 )  is exactly solvable and one obtains the following unperturbed energy 

( 2 . 5 a )  

where , y n ( r )  = r R n ( r ) .  

eigenvalues and normalised eigenfunctions 

Er,' = -$[( 1 /  n )  - ( a n h / 2 ) I 2  

U - 1  U )[I  -exp(-ahr)]" 

in which 

a,  = ( I /  nah ) - ( n / 2 )  

P n = ( 2 / n a h ) - n + 1 .  

( 2 . 5 6 )  

Using the explicit expressions for the unperturbed energy eigenfunctions and eigen- 
values, the first-order correction to the energy levels of the screened Coulomb potential 
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Vsc( r )  may be computed analytically. Using standard integrals (Gradshteyn and Ryzhik 
1965) we then obtain 

AE‘,’;‘ = (x‘,:)pf‘lx::) 
- uA(Pn - 1 ) ( P n  +2n - 1) - 

2 ( P n + n - 1 )  * = I  “ = I  

( n  + P n  + P - 2)( n + P.”+ v - 2) { 1 7 ( 2 ~ ,  + 1 )ryP + .) 
r(P + v+2a,  + 1 )  P 

+$( - , )*+,+’ y ( - * ) k +  I ( P  ; ”) 
x log [ ( 2 an + - + /A + v - k ) * + q } . 

k = O  

1 
U A’a’ 

Thus the binding energy for any bound s state may be obtained by combining the 
contributions of ( 2 . 5 ~ )  and (2.7). For numerical computations, we present here the 
explicit forms for the first four energy levels: 

(4 - a*A*) (4-  u’A’) 
- {log[(l +qA)*+bs2] 8 a2A2 EIS = 

-;IOg[(l+iA +i~A)*+as*]- t lOg[( l+tA - f ~ A ) ~ + ~ 6 ’ ] }  (2.8) 
(1 -4a’A’) (1 -4a’A’) - { -( 1 - ah  ) *  log[ ( 1 + A - 2aA )* + 8’1 8 16a4A4 E2s = 

+4( 1 - u A )  log[( 1 + A - d)*+ 6*] - 2(3 - u’A’) log[( 1 + A ) * +  6*] 

+ 4( 1 + ah  ) log[ ( 1 + A + ah  ) *  + 6’1 - ( 1 + ah ) *  log[ ( 1 + A + 2 d ) ’  + 6’1) 
(2.9) 

(4 - 8 1 u’A ’) (4 - 8 1 u’A ’) - { - ( 1 - 3 a h ) ’ ( 2 - 3 ~ , 4 ) ~  
72 39 366a6A6 E,, = 

x log[ (2 + 3A - 9aA )’ + 96’1 + 6( 1 - 3uA ) (2 - 3aA )* 

X l0g[(2 + 3A - 6aA ) *  + 96’1 - 3(2 - 3aA ) (  10 - 1 5 d  - 18a’A *) 

Xl0g[(2 + 3A - 3 ~ h ) ~ + 9 6 ~ ] + 2 ( 4 - 9 ~ * A ’ ) (  10 -9a2A2) 

X log[ (2 + 3A ) *  + 96’1 - 3( 2 + 3 U A  ) (  10 + 15aA - 18a’A ’) 

X log[(2 + 3A + 3aA )* + 96*] + 6( 1 + 3aA )(2 + 3 ah )* 

X log[ (2 + 3A + 6aA )* + 96’1 - ( 1 + 3~A)’(2 + 3aA ) *  

x log[ (2 + 3A + 9aA )’ + 96’1) 

(1-64a’A’) - (1 -64u2A2) 
32 1179 648a8A8 E4s = 

(2.10) 

X { - ( I  - ~ u A ) * ( ~ - ~ u A ) * ( ~ - ~ u A ) ~  

X log[( 1 + 2 A  - 8 ~ A ) * + 4 6 ~ ] +  8( 1 - 2uA)*( 1 - 4 ~ h ) ’ (  1 - 6uA) 

x log[( 1 + 2A -6~A)*+46’] -4( 1 - 2aA)*( 1 -4aA)(7 -28aA - 36a’A’) 
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XlOg[( 1 +2A -2ah)’+4S2] - 2 (  1 -4a2A2)(35 -380a2A2+ 576a4A4) 

Xlog[( 1 + 2h)’+4cS2]+ 8( 1 +4aA)( 1 -4a2A2)(7 + 14aA - 24a2A2) 

+ 2A +2aA)2+462] - 4( 1 +2aA)’( 1 +4aA)(7 +28aA - 36a2A2) 

+2A+4aA)2+462]+8(1+2aA)2(1+4aA)2(1+6aA) 

+ 2A + 6 ~ A ) ~ + 4 6 ’ ]  - (I  + 2aA)’( 1 +4aA)’( 1 +6aA)’ 

+ 2A + 8 aA )’ + 48’1). (2.1 1) 

The expressions in equations (2.8)-(2.11) are quite general in a sense that one obtains 
the results for the SSCP and ECSC potential just by setting S = 0 and 6 = A respectively. 
Furthermore, the analytic forms obtained by Lam and Varshni may be easily restored 
by using a = I ,  S = 0 for the SSCP and a = 1, S = A for the ECSC potential. 

For numerical work, it is now necessary to set the value of the scale parameter a 
which as yet remains arbitrary. Although there is no first principle to determine it 
uniquely, it will be shown that a rough estimate for it can be made following intuitive 
physical ideas. 

3. Determination of the scale parameter 

The scale factor can be determined in an approximate way from the behaviour of the 
energy eigenvalues in the neighbourhood of critical screening. When A = A,, E = 0 
and consequently the average kinetic energy is given by 

(T)=-(V). (3.1) 

It also follows from the standard virial theorem that 

2 ( T ) = ( r  dV/dr)).  (3.2) 

( V)A = A, = -f( r d V/ d r ) ) ~  = A ,  

Combining equations (3.1) and (3.2) gives 

(3.3) 

Using either the SSCP or the ECSC potential in equation (3.3), we find that one 
possible solution may be 

Acr= 1. (3.4) 

It is reasonable to assume that if accurate energy eigenvalues are to be obtained from 
the scaled Hulthin potential for A =A,, the true potential and the approximate one 
should be fairly close to each other. We then require that the actual potential and the 
scaled Hulthin potential match with each other at A = A,. 

For the SSCP, we obtain 

-exp(A,r)/r- 4 a A J  exp(-aA,r)/[l - exp(-aA,r)]. (3.5) 

Equations (3.4) and (3.5) then give 

e - “ ( e a + l ) - 1  = O  (3.6) 
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where e = 2.718 282. Solving equation (3.6) gives the effective scale factor for the SSCP 

a = 1.75. (3.7) 

Similar matching may also be done for the ECSC potential and we get a different scale 
factor 

a = 2.3. (3.8) 

Although we have made a crude estimation for the effective scale parameter, it 
turns out to be substantially different from a = 1 which corresponds to the 6imple 
HulthCn potential. Before proceeding further for numerical calculations, it is therefore 
necessary to convince ourselves about the proximity of the unperturbed potential and 
the actual screened Coulomb potential. For this purpose, the variation of the screened 
Coulomb potentials with the radial coordinate are shown in figure 1 along with the 
corresponding variations of the HulthCn and the scaled HulthCn potentials. It is 
remarkable that the scaled HulthCn potentials with a = 1.75 and a = 2.3 are in close 
agreement with the SSCP and the ECSC potential respectively, in contrast to the wide 
difference between the normal HulthCn potential and the screened Coulomb potential 
in the larger r region. This observation supports our conjecture that the scaled HulthCn 
potential should be a better choice than the conventional HulthCn potential as the 
lowest order approximation for a screened potential with l / r  singularity at the origin. 

1 0  

0 8  

0.6 

0.4 

0.2 

0 1 2 3 4 0 1 2 3 4 
r r 

Figure 1. Product of r V ( r )  as a function of r for ( a )  the Hulthtn potential, the scaled 
Hulthtn potential with a = 1.75 and the SSCP for A =0.4 and ( b )  the HulthCn potential, 
the scaled Hulthen potential with a = 2.3 and the ECSC potential for A = 0.4. 

4. Results and discussions 

It is fairly straightforward to compute the energy eigenvalues for the SSCP and the 
ECSC potential from our analytic expressions (2.8) to (2.11) using the appropriate 
values of S and the scaling factor a given in (3.7) and (3.8). In tables 1-4, we present 
the calculated energy eigenvalues as a function of the screening parameter A for the 
Is-4s states. Our calculated values of the energy levels are compared with the accurate 
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Table 1. Energy eigenvalues in atomic units as  a function of the screening parameter for 
the Is state of the SSCP. 

RS perturbation 

Screening Hulthtn Hypervirial Variational Numerical 
parameter (Lam-Varshni Scaled Pad6 ( Lam-Varshni (Rogers 
A A/& 1971) Hulthtn (Lai 1981) 1971) er a! 1970) 

0.10 0.08 -0.407 04 -0.407 05 -0.407 06 -0.407 06 -0.407 05 
-0.326 81 -0.326 81 -0.326 80 0.20 0.17 -0.326 58 -0.326 76 

0.25 0.2 1 -0.290 43 -0.290 83 -0.290 92 -0.290 92 -0.290 90 
0.50 0.42 -0.143 58 -0.147 75 -0.148 12 -0.148 08 -0.148 I O  
0.80 0.67 -0.027 08 -0.044 42 -0.044 70 -0.044 59 - 
0.90 0.76 -0.000 09 -0.024 15 -0.024 31 -0.024 18 - 
1 .oo 0.84 +0.021 65 -0.010 14 -0.010 27 -0.010 16 -0.010 29 

Table 2. Energy eigenvalues in atomic units as a function of the screening parameter for 
the 2s. 3s and 4s states of the SSCP. 

RS perturbation 

Hulthtn Variational 
Screening (Lam- Hyperviral (Lam- Numerical 
parameter, Varshni Scaled Pad6 Varshni (Rogers 
A State A / A c  1971) Hulthen (Lai 1981) 1971) et al 1970) 

0.025 
0.025 
0.05 
0.05 
0.05 
0.06 
0.08 
0.10 
0.10 
0.11 
0.20 
0.25 

3s 
4s 
2s 
3s 
4s 
4s 
3s 
2s 
3s 
3s 
2s 
2s 

0.18 
0.32 
0.16 
0.36 
0.63 
0.76 
0.57 
0.32 
0.72 
0.79 
0.64 
0.81 

-0.034 30 
-0.01 2 40 
-0.081 73 
-0.019 07 
-0.002 23 
+0.000 15 
-0.006 63 
-0.049 48 
-0.001 09 
+0.000 97 
-0.008 52 
+0.003 06 

-0.034 3 1 
-0.01 2 48 
-0.081 76 
-0.019 32 
-0.003 08 
-0.001 24 
-0.007 74 
-0.049 87 
-0.003 20 
-0.001 71 
-0.012 05 
-0.003 32 

-0.034 33 
-0.012 50 
-0.081 77 
-0.019 35 
-0.003 09 
-0.001 24 
-0.007 78 
-0.049 93 
-0.003 21 

-0.012 1 1  
-0.003 39 

- 

-0.034 33 
-0.012 50 
-0.081 77 
-0.019 35 
-0.003 09 
-0.001 24 
-0.007 77 
-0.049 93 
-0.003 20 
-0.001 72 
-0.01 2 08 
-0.003 36 

~~~ 

-0.034 33 
-0.012 51 
-0.081 77 
-0.019 35 
-0.003 09 
- 
- 

-0.049 93 
-0.003 21 

-0.012 1 1  
-0.003 39 

- 

values obtained from the elaborate hypervirial Pad6 approximant scheme of Lai 
(1981, 1982) and variational calculation of Lam and Varshni (1971,1972). We show 
here the [6,7] and the [ 10, 111 Pad6 approximant results for the SSCP and the ECSC 

potential respectively. The perturbative results based on the conventional HulthCn 
potential as the unperturbed Hamiltonian are also shown. For the SSCP, the values 
obtained numerically by Rogers et al (1970) are given for comparison. 

As can be seen from tables 1-4, the scaled HulthCn perturbation calculation 
gives consistently more accurate energy eigenvalues than that of the HulthCn 
perturbation of Lam and Varshni for large values of A.  In some cases, when the 
Hulth6n perturbation even gives the wrong sign for the bound-state energies, our scaled 
HulthCn perturbation predicts fairly correct results. 
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Table 3. Energy eigenvalues in atomic units as a function of the screening parameter for 
the Is state of the ECSC potential. 

RS perturbation 

Screening Hulthen Hypervirial Variational 
parameter, 
A A I A '  1972) Hulthen (Lai 1982) 1972) 

(Lam-Varshni Scaled Pade ( Lam-Varshni 

0.06 
0.08 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 

0.08 
0.1 I 
0.14 
0.28 
0.42 
0.56 
0.69 
0.83 

-0.440 201 
-0.420 464 
-0.400 884 
-0.306 298 
-0.2 I9 028 
-0.140 595 
-0.071 714 
-0.012 585 

-0.440 198 
-0.420 457 
-0.400 869 
-0.306 200 
-0.2 19 044 
-0.141 857 
-0.077 114 
-0.027 708 

-0,440 201 
-0.420 464 
-0.400 885 
-0.306 335 
-0.219 416 
-0.142 439 
-0.077 679 
-0.028 232 

-0.440 201 
-0.420 464 
-0.400 885 
-0.306 334 
-0.219411 
-0.142418 
-0.077 606 
-0.028 03 I 

Table 4. Energy eigenvalues in atomic units as a function of the screening parameter for 
the 2s, 3s and 4s states of the ECSC potential. 

~~ 

RS perturbation 

Screening Hulthin Hypervirial Variational 
parameter, (Lam-Varshni Scaled Pad6 ( Lam-Varshni 
A State A / A ,  1972) Hulthen (Lai 1982) 1972) 

0.02 
0.02 
0.02 
0.03 
0.04 
0.04 
0.04 
0.05 
0.06 
0.06 
0.07 
0.08 
0.10 
0.15 

2s 0.12 
3s 0.28 
4s 0.49 
4s 0.74 
2s 0.24 
3s 0.55 
4s 0.99 
3s 0.69 
2s 0.36 
3s 0.83 
3s 0.97 
2s 0.48 
2s 0.60 
2s 0.90 

-0.105 104 
-0.036 024 
-0.012 557 

-0.085 768 
-0.018 768 
+O.OOO 670 
-0.01 I 366 
-0.067 408 
-0.004 903 
+O.OOO 563 
-0.050 3 I O  
-0.034 668 
-0.002 566 

-0.105 107 
-0.036 025 
-0.012 557 
-0.005 224 
-0.085 756 
-0.018 767 
-0.000 I 15 
-0.01 1 498 
-0.067 374 
-0.005 392 
-0.000 7 I8 
-0.050 289 
-0.034 794 
-0.005 153 

-0. I05 104 
-0.036 025 
-0.012 572 
-0.005 270 
-0.085 769 
-0.018 823 
-0.000 125 
-0.01 I 576 
-0.067 421 
-0.005 462 
-0.000 750 
-0.050 387 
-0.034 941 
-0.005 260 

-0.105 104 
-0.036 025 
-0.012 572 
- 

-0.085 769 
-0.018 822 
-0.000 1 I8 
- 

-0.067 421 
-0.005 454 
- 

-0.050 384 
-0.034 935 

We wish to mention at this point that it is not the value of A only but also the ratio 
h / A ,  which is important in fixing the scale of the screening for a given quantum state 
because the value of A, changes appreciably from one state to the other. The critical 
screening parameters for different states have been accurately determined numerically 
by Rogers et a1 (1970) for the SSCP and by Singh and Varshni (1983) for the ECSC 

potential. Using those numbers, we give the values of A / A c  corresponding to each 
value of A in the tables. Our  predicted energy eigenvalues are found to agree within 
2% with the numerical and other sophisticated analytic results even when A is as large 
as 0.8AC. For the ECSC case, our result for the 4s state is also close to the variational 
result even when A / A ,  = 0.99. Judged in this light the present approach therefore has 
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the merit of pushing the accuracy to an appreciably large value of h/A,,  yet remaining 
remarkably simple for calculated purpose. 

Before we conclude, a few comments summarising the purpose and achievements 
of the present analysis of the scaled Hulthtn perturbation would perhaps be in order. 
Firstly, we have derived compact analytic expressions for the energy levels which may 
be used for a class of screened Coulomb potentials in a unified fashion. In fact, we 
can predict the energy levels of the generalised exponential cosine-screened Coulomb 
potential (Singh and Varshni 1983) by choosing 6 in (2.1) to be non-zero and different 
from A. Secondly, our study has been aimed at focusing attention on some interesting 
aspects of the RS perturbation theory. About twelve years ago Lam and Varshni made 
an interesting proposition for improving the Coulomb RS perturbation calculation 
using the standard H u l t h h  potential as the unperturbed Hamiltonian. Ten years later, 
we have now been able to modify that idea and show that a much more accurate 
energy spectrum can be obtained from the RS theory on the basis of an optimally 
scaled zero-order Hamiltonian. In the case of the screened Coulomb potentials, it is 
the scaled HulthCn potential with stronger coupling and screening strengths which 
becomes the dominant term in the perturbation framework. The aim of this paper is 
not to suggest a better theoretical model than the existing ones but to demonstrate 
that the right choice of the unperturbed Hamiltonian in the standard RS perturbation 
theory predicts results in a much simpler way than by using more sophisticated and 
rigorous calculations. 
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